skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gruber, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The microstructural properties of deep arc cumulates (arclogites) are poorly understood, but are essential in gaining a comprehensive picture of the rheology of continental lithosphere. Here, we analyze 16 arclogite xenoliths, comprising a low MgO and a high MgO suite, from Arizona, USA using electron backscatter diffraction to map microstructures, clinopyroxene shape preferred orientations (SPO), and clinopyroxene crystallographic preferred orientations (CPO). The lower pressure (∼1 GPa) low MgO arclogites show a variety of different clinopyroxene fabrics (S, L, and LS‐type), whereas the high pressure (>2 GPa) high MgO arclogites show predominantly LS‐type fabrics. Furthermore, clinopyroxenes in low MgO arclogites all show a pronounced correspondence between the long axis of their grain shape ellipsoids with the [001] crystal direction, indicating an SPO control on the CPO. In contrast, high MgO arclogite clinopyroxenes lack such a correspondence. We propose that both arclogite types originated as igneous cumulates, consistent with previous studies, but that the high MgO suite experienced substantial recrystallization which diminished the original igneous SPO‐induced CPO. Using strain rates appropriate for arc settings, we calculate a strength profile for the lithosphere and argue that the deepest arclogite textures are consistent with lithospheric foundering through ductile deformation under high shear strain (10−14–10−12 s−1). Our study shows that there is a high degree of shear strain localization in deep arc roots while shallower portions are relatively undeformed. 
    more » « less